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Quantitative understanding of the physics of dust or granular matter transport significantly impacts
several aspects of burning plasma science and technology. This work takes machine vision techniques
popular in robotics and self-driving cars and applies them to identification and analysis of micropar-
ticles generated from exploding wires. Using only the image frames and knowledge of the intrinsic
properties of the cameras, a Python code was written to identify the particles, automatically calibrate
the relative image positions, and extract trajectory data. After identifying approximately 50 particles
based on the timing of secondary particle explosions, the eight point and random sample consensus
algorithms were used to determine the geometric correlation between the cameras. Over 100 parti-
cle matches were found between the two camera views. These correlated trajectories were used in
subsequent 3D track reconstruction and analysis of the physics behind the particle motion. The 3D
reconstruction resulted in accurate positioning of the particles with respect to the experimental setup.
The particle motion was consistent with the effects of a 1 g gravitational field modified by drag forces.
The methods and analyses presented here can be used in many facets of high temperature plasma

diagnostics. Published by AIP Publishing. https://doi.org/10.1063/1.5039373

l. INTRODUCTION

A better understanding of the physics of particulate matter
transport is needed in many regions of high temperature plasma
science, including but not limited to: improving fusion energy
production through impurity control, suppressing or mitigating
plasma stabilities through edge-localized-mode (ELM) pac-
ing, fueling and controlling particle inventory and density pro-
files, mitigating disruptions using shattered cryogenic pellets,
and gaining insight into tritium retention and transport that will
assist the development of tritium removal technology. These
impacts will only grow stronger as the field evolves toward
longer pulse devices in which accumulation of deposited layers
and associated injection of particulate matter becomes more
pronounced.

Recent studies have started examining some of these top-
ics. Lithium granule injector experiments in EAST and DIII-D
successfully demonstrated the usefulness of granule injec-
tion for disruption mitigation and ELM triggering.! Another
promising method for disruption mitigation in ITER involves
injecting shattered cryogenic pellets.> High velocity imaging
systems have been designed and tested on both laboratory
systems and NSTX.>* The physical basis for diagnosing lab-
oratory plasmas utilizing dust transport has been described,
along with a proposal for microparticle tracer velocimetry
systems for use in various plasma flows.’

This work builds upon earlier studies® of microparticle
tracking by showcasing a more robust analysis framework for

Note: Paper published as part of the Proceedings of the 22nd Topical Confer-
ence on High-Temperature Plasma Diagnostics, San Diego, California, April
2018.
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use alongside imaging technologies. Implemented in Python,
this method automatically identifies particles, calibrates stereo
image series, and reconstructs full 3D particle trajectories for
subsequent analysis. As an analog to moving particles in a
fusion device, an exploding copper wire was used to create
two image series with high particle density.” To capture these
image series, two Vision Research Phantom v2511 cameras
were used, running at 100 kfps with a vertical and horizontal
pixel size of 28 um. The raw image size is 384 x 384 pixels.
The stereo images of the hot wire just prior to disintegration
are shown in Fig. 1.

The pinhole camera model and two-camera epipolar
geometry were used to mathematically describe the imaging
setup (see Fig. 2). For a point x| on the image plane for camera
1, there is an unknown depth w of the point from the optical
center of the camera. This unknown depth creates a ray of
potential 3D positions of x;. In camera 2, this ray would be
seen as a line across the image, known as an epipolar line (L;).
The representation of the real particle on the image plane of
camera 2, Xp, lies somewhere along this line. Likewise, the
epipolar line (L) that x, would create in image plane 1 should
contain point X;. The relationship between the points and their
epipolar lines is given by

[Fllx1] = [L2]and [F][x] = [L1], ey

where F is known as the fundamental matrix.

The fundamental matrix includes information about the
intrinsic (inherent camera properties, such as pixel size, focal
length, etc.) and extrinsic (translation and rotation) properties
of the cameras. In most practical imaging configurations, the
intrinsic properties of the cameras will be known. The extrinsic
translation and rotation matrices between the cameras must

Published by AIP Publishing.
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FIG. 1. Stereo images of the supporting leads and the wire immediately prior
to disintegration. This support was removed via image subtraction during
particle identification and analysis.
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FIG. 2. Diagram of epipolar geometry for a two-camera stereo imaging setup,
displaying how the depth ambiguity of particle w in image x| creates an epiline
in camera plane 2 along which the second image, x,, should lie.8

be found before 3-dimensional reconstruction of the particle
positions can progress. This information is contained in the
essential matrix, which can be found from the fundamental
matrix. The 2-view reconstruction pipeline that was used to
reconstruct these data can be described as follows:

(1) Identify particles and stitch trajectories in both views
(2) Find initial particle matches

(3) Determine and refine the fundamental matrix

(4) Estimate essential matrix

(5) Decompose essential matrix

(6) Estimate 3D particle positions

Il. PARTICLE IDENTIFICATION AND TRAJECTORY
STITCHING

To begin, the particles in each frame must be identified
and logged. The open-source image analysis software ImageJ
was used to subtract the background (the leads holding the
wire before explosion) and artificially increase the number
of pixels in the images.” The native 384 x 384 resolution of
the fast frame camera images is too low for consistent par-
ticle identification, as particles sizes were on the order of
3 pixels wide or less. A bicubic interpolation routine was
used to increase the resolution of each image in the series to
2000 x 2000. Although slower than linear interpolation, a bicu-
bic interpolation uses more neighboring pixels (16 vs 4 for
linear) and produces a smoother image with fewer interpola-
tion artifacts. The interpolation appreciably increased the pixel
size of each particle, allowing the Python module Trackpy to
effectively identify them. Trackpy was developed as a particle
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identification suite for Python and includes useful qualifiers to
help filter particle identification, including pixel size, bright-
ness with respect to background, and particle separation.'? In
the case of these image series, standard particle brightness
fell between 4000 and 6000 (a.u.), so a minimum brightness
of 2000 was used along with an initial particle size esti-
mate of 15 pixels. These qualifiers can be easily adjusted
based on the image and application, and in this case, trial and
error on smaller subsets of images determined that the above
combination eliminated the vast majority of false particle
identification.

The frame-by-frame positions of the identified particles
were then stitched into individual trajectories using Trackpy
tools. This was performed by extrapolating each particle’s
position and instantaneous velocity to the next frame, search-
ing that frame for the particle and correlating the result frame-
by-frame. The Trackpy module was built around the Crocker
and Grier algorithm!! for finding and tracking particles under-
going Brownian diffusion, which have no frame-to-frame
velocity correlation, so the simplest application of the trajec-
tory stitching functionality searches a range of surrounding
pixels for the particle. Trackpy takes the Crocker-Grier algo-
rithm farther and helps to maximize accurate trajectory stitch-
ing by including frame-by-frame instantaneous velocities of
each particle and using them to correctly determine the con-
tinued trajectory if several potential matches are included in
the search area.

Trackpy allows for the inclusion of a “memory” vari-
able, which can account for particles that briefly become
occluded or fall below the threshold brightness value. The posi-
tion of the particle is remembered and extrapolated through
subsequent frames, and if the particle reappears within the
number of frames allotted, it will be re-matched to its orig-
inal trajectory. This functionality was especially useful in
a system involving numerous particles with low separation
distances. Temporary occlusions were common, and this pro-
cess proved capable of sorting out individual trajectories from
high densities of overlapping particles. Some errors inevitably
occur, so the data were filtered to remove any trajectories
lasting fewer than 50 frames. This resulted in several hun-
dred unique trajectories from each image series, offering a
much larger data set than particle matching by the hand can
provide.

lll. AUTOMATIC CALIBRATION

After identifying and stitching the particle trajectories,
calibration of the stereo images begins with identifying a set
of particles that can be matched between the two views. Typi-
cally, this entails algorithmically identifying points of interest
in a scene, such as edges and corners.® In this exploding wire
scenario, the lack of extensive background and high particle
density makes this type of correlation difficult. Instead, a set
of matched particles was identified using particle brightness.
During flight, the molten copper particles are extremely reac-
tive. This leads to pyrophoric explosions of several particles,
resulting in rapid, short-lived brightening events as they burst
into several new particles. After the particle splits, the track-
ing algorithm tends to follow the brightest of the resulting
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FIG. 3. Representative brightness plot of a particle vs. frame number, which
is used to find a set of initial particle correlations for camera calibration.

fragments along its new trajectory. A representative particle
brightness track is shown in Fig. 3.

These 2x-3x brightness increase events lasted 1-2 frames
on average, providing an excellent filter for initial particle
matches with highly accurate position data. The frequency
of secondary explosions meant that several frames included
more than 1 brightening event; these were discarded for ease of
computation. Using this method, 57 particle pairs were found
that brightened simultaneously in the same frame, while being
the sole event in the said frame. This set of correlated initial
particle matches was used as input for determination of the
fundamental matrix describing the epipolar geometry.

There is ample theoretical basis for the correlation of
stereo images. The eight point algorithm!? requires at least
8 matched points between the two-image series to determine
a fundamental matrix. The P > 8 point pairs are given by

{21,22}1:{ x‘}, M} . @
yi| [»2 ;

The mean pixel position u and variance o2 of the set of
particles is computed.

ﬁl,Z = Z,le (}1,2)/P’ (3)

;21,2 =Z; (<}1’2)i - ﬁl’z)z/P' @

The particle positions are transformed so that they are
centered around the origin and have a normalized distance to
the center. This decreases the error in the fundamental matrix.

N 4 (}]2) - . N
= ’ i/ —l‘tl,z - =
(xl‘z)i /0'1,2 /0'1»2 T],z(xm)i. ®)

The constraint matrix A is found using the following:
A=[A1;Az; .. Ap], (6)

A = XX 1 X501 X3 Y2iX 12 YoV 1 Yo X1 Vi - (D)

The fundamental matrix is a 3 X 3 reordering of the

eigenvector corresponding to the smallest eigenvalue resulting

from the singular value decomposition (svd) of the constraint
matrix.

[U,L,V]=svd(A), ®)

F =[v19,V29,V39; V49, V59, V69; V79, V89, V99 . 9
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The fundamental matrix is adjusted to account for the
transformed coordinates.

Fpna =T, FT. (10)

The fundamental matrix is then refined using the Random
Sample Consensus (RANSAC) algorithm.'? The RANSAC
method allows for any number of input points and finds a
fundamental matrix using random subsets of 8 points from
the input set. Then the distance of each point from the epi-
line created by its counterpart in the corresponding image is
calculated. If the distance falls above a threshold, the point is
considered an outlier. On each iteration, RANSAC tallies the
number of inliers from the full input set and maintains the fun-
damental matrix that has the largest number of inliers. The full
set of inliers is then used in the eight point algorithm to further
refine the fundamental matrix. In this way, it was found that
50 of the initial 57 potential matches were inlier points, with
7 outliers. The maximum distance from any inlier point to its
epiline was 2.2 pixels, in a 2000 x 2000 pixel image. These
points, and their matching epilines, are shown in Fig. 4.

To check the accuracy of the fundamental matrix based
on the brightening event particle correlation, the fundamental
matrix was tested on both background points from the leads
and particle matches identified in the initial attempt at identi-
fying particle trajectories by hand.” The successful validation
showing all particles lying along their matching epilines is
shown in Fig. 5.

It is now possible to deconvolve the fundamental matrix
to recover the intrinsic and extrinsic properties of the imaging
setup. The intrinsic matrices include inherent properties of
the cameras used to create the images being analyzed. This
includes focal lengths, pixel sizes, and optical centers (other
corrections and parameters are taken as negligible).

The extrinsic properties, in the case of 2 cameras taking
stereo images, include the physical translation and rotation
between the 2 cameras. The technical specifications, and there-
fore the intrinsic properties, of the cameras are known. Using
the known intrinsic matrices A; > and the fundamental matrix,
the essential matrix E can be found.?®

flpu v uo
E=AlFA;,whereA=| 0 f/p,vo|. (11)
0 0 1

Here, f is the focal length, p,, are the horizontal and
vertical pixel sizes, respectively, u,, vy are the pixel coor-
dinates of the optical center, and 7y is the skew. Based on

Extracted Outliers

All Potential Matches

Pixel Number Pixel Number Pixel Number

Pixel Number

FIG. 4. (Left) All potential point matches used for correlation, plotted with
their corresponding epilines. (Right) Outliers extracted after the RANSAC
procedure. The epilines are color coded between stereo images, and all points
are plotted at their position during their brightening event.
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FIG. 5. Stereo views of points on the background wire frame (top) and initial
analysis data gathered by hand (bottom)’ match their corresponding epilines,
validating the fundamental matrix.

the singular value decomposition of the essential matrix,
the translation (7) and rotation (£2) matrices that describe
the position of one camera in relation to the other can be
derived.

W=[0, -1, 0;1, 0, 0;0, 0, —1], (12)
(U, L, V]=svd(E), (13)
0 -7 7 Ty
w=UWU =| 1, 0 -1 |>7=|7], (14)
-7, & O T,
Q=uw'vT, (15)

From this knowledge of the geometric relationship
between the cameras, 3D reconstruction can progress.

IV. 3-DIMENSIONAL RECONSTRUCTION

To begin full 3D trajectory reconstruction, the fundamen-
tal matrix was used to correlate particles between frames using
their corresponding epilines. Ideally, this should yield a sin-
gle perfectly matched particle for the entire image series.
However, due to the effects of finite pixel size, temporary
occlusions, and high particle density/low separation distance,
imperfect correlation was common. Therefore, all potential
matches within a threshold distance were logged for each

Pixel Number

FIG. 6. Stereo images displaying the strongly matched trajectories. Trajecto-
ries are color coded between the images.
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FIG. 7. Accurate 3D reconstruction of well-matched trajectories from 2
stereo images.

particle in each frame, and the resulting list of potential
matches was filtered to yield only strongly matched trajec-
tories with greater than 80% correlation over more than 500
frames. These matches are shown in Fig. 6.

The sharp turns apparent in many of the trajectories is
caused by the pyrophoric explosions of select particles. As
they exploded into several new particles, the algorithms tended
to track the largest piece along its new trajectory.

These secondary tracks were then filtered for analysis of
particle motion. Utilizing the intrinsic and extrinsic properties
of the cameras, the 3D reconstruction algorithm develops a set
of constraints on the particle position in 3 dimensions.

There is inherent ambiguity in the sign of the translation
and rotation matrices, resulting in 4 potential 3D reconstruc-
tions.® Once several particles are reconstructed, the extrinsic
properties are found by determining the set that reconstructs
the most (or all) points in front of both cameras. The 3D
reconstruction, seen in Fig. 7, successfully recreated parti-
cle track with excellent agreement to experiment, placing
particles between 140 and 160 cm from the cameras. Initial
experimental wire placement was approximately 150 cm.

V. ANALYSIS OF PARTICLE MOTION

The reconstruction process yields reliable 3D position,
velocity, and acceleration data for subsequent analysis of par-
ticle motion. However, in many trajectories, there is large
variation caused by the “pixel effect.” The particles move in
a stair-step fashion because of the lack of subpixel resolution.
In the original 384 x 384 resolution of the fast frame camera
images, the particles were at most 3 pixels in diameter. Their
smooth velocity is therefore segmented as they move across
pixels. The bicubic method used to increase particle pixel size
cannot eliminate this problem since it simply interpolates the
original data. Since the experimental tests were performed in
atmosphere, it was assumed that the motion of the particles
was governed by gravity and drag. Simple equations of motion
were derived from Stokes drag, utilizing a drag constant b and
velocity dependent drag force.

Fp=-bv, (16)

m—=mg —bv. a7
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The terminal velocity v, is defined as

mg 8rg
—_° _ /_ 1
v b 3Cp (%)

Here radius » and drag coefficient Cp are determined
by the particle size and shape. Integrating Eq. (17) yields
equations of motion for the 3D particle position.

8
x:m(l—e /Vt)+x0, (19)
g
vi(vyo — v gt
y=v,t+u(l—e /Vt)+y0, (20)
g
8
Z=m(l—e /Vt)+z0. Q1)
g

The pixel effect mentioned above led to some uncer-
tainty when deriving the initial particle position and velocity
for use in trajectory fitting. In most cases, an initial velocity
found by averaging velocity over the first stair-step elimi-
nated most error, but better methods of smoothing the data and
accounting for the pixel effect are still being investigated. Ini-
tially, the terminal velocity was determined using the median
particle size of r =12.5 um, based on post-experiment parti-
cle collection in ethanol.” The drag coefficient was set at 0.1,
based on Reynold’s number (~4 x 10%) and smoothed aerody-
namic shape of the recovered particles.” Using these values,
the theoretical curves consistently undercut the real particle
velocity, as can be seen in green in the representative particle
trajectory in Fig. 8.

Several phenomena can help explain this discrepancy.
First, the particles studied are most likely larger than the
median. Based on qualitative examination, the particles cho-
sen for analysis were predominantly larger and brighter than
average and included many of the pyrophoric particles. Each of
these particles split into an average of approximately 3.5 pieces
before they would be collected, suggesting that the analyzed
particles are much bigger than the median size.

To test this, a function was written to allow optimization of
the drag fit to the particle motion, changing the particle radius

|
o

—— Real Trajectory
—-=- Fit with Drag
—-=- Optimized Drag

® N

X Pos (cm)
!

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
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FIG. 8. Representative 3D particle trajectory, including simple drag (green)
and optimized drag (red) curves based on the initial particle position and
velocity.
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to match the terminal velocity of each particle. This resulted in
a much more accurate description of the particle motion, seen
in red in Fig. 8. The optimized particle radii lie in the range of
r =25-30 um, which is consistent with the bias in the particle
size discussed above.

Other factors that may help explain discrepancies between
the modeled and observed particle motion include: the pixel
effect biasing the initial velocity to a value lower than reality;
a lower drag coefficient due to a higher Reynold’s number
or non-spherical particle shape; air expansion forces due to
the explosion of the wire; and heat from the molten particles
changing the local characteristics of the air. These avenues
have yet to be fully explored.

VI. CONCLUSIONS

In this work, a Python framework was developed for accu-
rate 3D reconstruction of particle motion from stereo 2D fast-
frame camera image series. The reconstruction shown here
does not require accurate foreknowledge of the placement of
the cameras or any background calibration methods, merely
the intrinsic properties of the cameras themselves. Requir-
ing no manual input, the process self-calibrates the camera
views and outputs 3D motion data for subsequent analysis.
This pipeline for particle correlation can be easily adjusted for
many applications, including tracking particles and impurities
in a variety of high temperature plasma systems.

A sound basis for the physics governing particle motion
was found, consistent with motion in a 1 g gravitational field
governed by drag. Further refining of the results should correct
for the pixel effect and justify the variation in terminal velocity
seen in the optimized trajectory fits. Size bias may result from
the fact that the large, long-track particles were more likely
to explode, so the average size may be larger than indicated.
Additional forces acting on the particles, such as localized
heating of air, should be investigated.
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