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Abstract: Impingement of high fluxes of helium ions upon metals at elevated temperatures 

has given rise to the growth of nanostructured layers on the surface of several metals, such 

as tungsten and molybdenum. These nanostructured layers grow from the bulk material and 

have greatly increased surface area over that of a not nanostructured surface. They are also 

superior to deposited nanostructures due to a lack of worries over adhesion and differences 

in material properties. Several palladium samples of varying thickness were biased and 

exposed to a helium helicon plasma. The nanostructures were characterized as a function 

of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter 

appear to be integral to the nanostructuring process. Nanostructured palladium is also 

shown to have better catalytic activity than not nanostructured palladium. 
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1. Introduction 

Experiments at several different institutions have observed the growth of tungsten nanostructures 

under exposure to helium plasmas while investigating the viability of tungsten for high heat flux 

components in nuclear fusion reactors [1,2]. While these structures are potentially fatal to the fusion 

plasma when grown [3], they do exhibit characteristics that could be exploited in other applications. A 

high porosity, a low density of about 10% of the bulk material, large surface area, increased emissivity, 
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and decreased reflectance are all properties of the nanostructured surface [4–7]. The nanostructures are 

produced by prolonged exposure to a flux of helium ions while the tungsten is at an elevated 

temperature. Several studies have investigated the similar formation of nanostructures on metals other 

than tungsten. Exposure to fluxes of helium in excess of 1020 m−2·s−1 at a temperature approximately 

between 30% and 50% of the melting temperature yields several different nanostructures, i.e., 

cones/pillars have been observed on copper [8], fuzz on molybdenum and tungsten [5], and roughening 

of the surface on titanium [8]. Palladium is widely used as a catalyst in a variety of different chemical 

reactions; and because catalytic activity scales linearly with the surface area of the catalyst, 

experiments were undertaken to investigate the nanostructuring of palladium under irradiation by 

helium ions. To this end, several palladium substrates were exposed at elevated temperatures to helium 

ions from a helicon plasma source. The dependence of the formed nanostructures on temperature and 

sample geometry are described herein. 

2. Experimental Section  

Palladium samples (Alfa Aesar 99.9%, Ward Hill, MA, USA) were exposed inside of a commercial 

grade helium helicon source (MORI 200, Trikon Technologies, Newport, UK) [9]). The plasma 

conditions for the experiments described herein were generated with an RF power of 700 W, a 

magnetic field of 120 G, and a background helium pressure of 100 mTorr as read by a convectron 

gauge (Granville Phillips 375, MKS Instruments, Andover, MA, USA). A photo of the experimental 

chamber can be seen in Figure 1. The resulting plasma density is 1 × 1018 m−3 with an electron 

temperature of 4 eV diagnosed with an RF-compensated Langmuir probe [10] in the region where the 

sample was placed. The palladium was supported via a copper sample holder, which suspended the 

sample in the plasma. The sample was biased to negative 40 V with respect to plasma potential such 

that the incoming helium ion flux had an energy of 40 eV and a flux of 2.5 × 1021 m−2·s−1. Sample 

temperature was achieved merely by heating of the sample via the incoming ion flux. Regulation of the 

temperature, however, was achieved by adjusting the area of the sample in direct contact with the 

copper sample holder, thereby controlling conduction losses. It should be noted that the centerline 

density of the plasma is constant to within measurement error over the range of sample placements, so 

adjustment of the sample relative to the copper sample holder did not change the flux to the target. 

Temperatures were not directly measured, but rather computed via an experimentally calibrated finite 

difference model which balances input energy from helium ion irradiation and losses via conduction 

and radiation [11]. Scanning electron microscopy (Hitachi S4700, Tokyo, Japan) was performed on the 

exposed samples. Four different geometries were tested; a plate of palladium 1 cm × 2 cm × 0.5 mm, a 

wire 0.5 mm diameter × 20 cm in length, and two thin films deposited on 25 mm × 25 mm glass 

substrates with thicknesses of 300 nm (evaporation coating) and 30 nm (magnetron sputter coating). 
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Figure 1. Photo of exposure chamber showing MORI (Trikon Technologies, Newport, UK) 

automated matching network, exposure volume, load lock gate valve, and transfer arm for 

introducing samples without breaking vacuum. 

3. Results and Discussion 

3.1. Palladium Nanostructuring as a Function of Temperature 

Scanning electron microscope (SEM) micrographs of the exposed wire and plate are shown in 

Figures 2–4, respectively. Figure 3 is a series of top down (0° from normal) micrographs of the plate; 

Figure 4 is a series of micrographs of the plate and has a tilt of 40° from normal introduced to the 

sample. From these micrographs it can be seen that exposure of palladium at elevated temperatures to 

fluxes of helium ions forms a series of pillars or tendrils from the surface. Energy dispersive X-ray 

Spectroscopy (EDX) analysis of these tendrils confirms that they are palladium. These tendrils are  

350 ± 100 nm in diameter, 1000 ± 250 nm in height, and possess an areal density of approximately  

1.5 tendrils/µm2. It can also be seen from the difference between the 0° and 40° micrographs of the 
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plate that these tendrils grow normally to the surface. The tendrils are also mostly straight at 

temperatures less than 700 K, and in excess of 700 K the structures begin to bend and fold. As the 

temperature increases beyond this (>775 K), the nanostructures begin to increase in diameter  

(500 ± 100 nm), but not length. The areal density of tendrils decreases to approximately 1 tendril/µm2. 

As the temperature exceeds 850 K, the nanostructures appear to begin to anneal back into the bulk, 

resulting in very rounded and thick tendrils at 880 K (see Figure 2), and full disappearance of tendrils 

by 900 K (Figure 5). The nanostructuring process appears to be bubble driven, similar to the growth of 

tungsten nanostructured “fuzz” which is predicted to grow under certain conditions in the divertor 

region of fusion reactors [12]. However, while the bubbles that drive nanostructuring in tungsten are 

approximately 10 nm in diameter, the pits observed in the surface of the nanostructured palladium 

(attributed to bubble bursting at the surface similar to tungsten [11]) are 75 ± 25 nm in diameter at 

temperatures less than 750 K. At temperatures above 750 K, these pits swell in size to 110 ± 30 nm in 

diameter. Normalizing two characteristic parameters of the nanostructures to the pit diameter draws 

striking parallels between tungsten and palladium nanostructuring. The ratio of tendril diameter to pit 

diameter in tungsten is approximately 3 to 4 [11]. Similarly, the ratio of tendril diameter to pit diameter 

in palladium is also 3 to 4. Additionally, the separation distance between individual tendrils is 

approximately 7 to 11 times the diameter of the pits in tungsten [11]. With a tendril separation distance 

of 800 ± 150 nm, palladium nanostructures have a ratio of tendril separation distance to pit diameter in 

the exact same range. This is very indicative of a similar bubble mechanism driving the growth of fuzz 

tendrils, whereby bubbles created in the bulk of the material effectively rise to the surface or grow and 

thin the material above them, subsequently rupturing. As more bubbles impact the surface, hills and 

valleys start to form stochastically. Bubbles then are more likely to connect to a valley rather than a 

hill by virtue of shorter path length, and as a result nanostructures grow. Characteristics such as the 

ratio of tendril diameter or tendril separation distance to the pit diameter fall out of a simple Monte 

Carlo model implementing only the assumption that bubbles are more likely to rupture at a valley than 

a hill [11]. Since the model is independent of material properties, any nanostructuring via the same 

mechanism will show similar tendril to pit diameter ratios and tendril separation to pit diameter ratios, 

as is seen here. Much like tungsten nanostructuring via helium plasma bombardment, palladium 

nanostructuring appears to have a window of temperature for which it can grow tendrils. Tungsten fuzz 

grows within the temperature range of 1000–2000 K (0.27–0.54 Tm) [13]. Palladium nanostructuring in 

the experiments described herein occurred at 650 K (0.33 Tm) and 880 K (0.48 Tm) as well as several 

other intermediate temperatures and was bracketed by a lack of nanostructuring formation at 500 K 

(0.27 Tm) and 900 K (0.49 Tm). When normalized to the melting point of the material, the active 

temperature range for the bubble driven nanostructuring appears to be very similar. 
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Figure 2. Scanning electron microscope (SEM) micrographs of palladium surface (0.5 mm 

diameter wire sample) after exposure to helium plasma at elevated temperature. The flux to 

each area is identical, the only changed variable is temperature (noted in the upper  

left corner of each micrograph both absolute and as a fraction of the melting point  

of palladium). 

 

Figure 3. SEM micrographs of palladium surface (0.5 mm plate sample) after exposure to 

helium plasma at elevated temperature. The flux to each area is identical, the only changed 

variable is temperature (noted in the upper left corner of each micrograph both absolute 

and as a fraction of the melting point of palladium). Secondary electron collection 

performed at a tilt angle of 0° with respect to the surface normal. 
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Figure 4. SEM micrographs of palladium surface (0.5 mm plate sample) after exposure to 

helium plasma at elevated temperature. The flux to each area is identical, the only changed 

variable is temperature (noted in the upper left corner of each micrograph both absolute 

and as a fraction of the melting point of palladium). Secondary electron collection 

performed at a tilt angle of 40° with respect to the surface normal. 

 

Figure 5. SEM micrograph of palladium surface (0.5 mm diameter wire sample) after 

exposure to helium plasma at 900 K, only a couple tendrils are visible as the annealing rate 

of the tendrils begins to exceed the rate of growth. 

3.2. Palladium Nanostructuring versus Palladium Thickness 

Many applications of palladium nanostructuring revolve around the increased surface area to 

volume ratio (i.e., improving the catalytic activity for a given weight of palladium). As a result of this, 

the ability to grow nanostructures on thin films of palladium is very desirable as this would further 

increase the surface area to volume ratio of an amount of palladium with an already large surface area 

to volume ratio. There, however, was thought to be a minimum thickness at which the palladium 

would no longer nanostructure because the bubbles necessary to drive the growth of palladium 

nanostructures were approximately 100 nm in diameter and could therefore not grow to full size in 

very thin films. As thick substrates of 0.5 mm thickness and diameter had already been tested, two thin 
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films (of thickness 300 and 30 nm) were investigated to see the structures that would form. SEM 

micrographs of each sample can be seen in Figures 6 and 7, respectively. Nanostructure growth for the 

300 nm film appears to be again bubble driven. Tendrils of diameter 320 ± 100 nm are apparent and so 

are pits of 75 ± 15 nm diameter. These are commensurate with the diameters of the tendrils and pits of 

the bulk samples at the same temperature of exposure. The tendrils are also very straight, much like the 

tendrils observed in the bulk samples at temperatures <700 K. This implies the bubble formation 

depths and subsequent loop punching to the surface occurs at depths of less than 3 bubble diameters, 

much like the formation of helium bubbles within tungsten which drive nanostructuring [11]. As the 

thickness of the film is reduced below that of the bubble diameter, formation of full helium bubbles to 

drive nanostructuring is suppressed. Instead, it appears as though formation and growth of bubbles 

within the 30 nm thick film rupture the film without being able to build upon each other and grow 

nanostructures. This results in a series of pits in the surface, but no vertical growth of nanostructures. 

These pits are of diameter 130 ± 35 nm, which is larger than those observed in the 300 nm and bulk 

samples. Wrinkles are also evident in the palladium film which is indicative of delamination of the 

palladium film from the SiO2 substrate. The palladium film was deposited via magnetron sputtering at 

room temperature and due to residual tensile stresses in the film, once it became delaminated,  

it wrinkled. 

 

Figure 6. SEM micrograph of palladium surface (300 nm thin film deposited on SiO2) 

after exposure to helium plasma at elevated temperature. (A), (B), and (C) are different 

resolutions of the same location showing growth of tendrils and voids that appear to 

penetrate down to the SiO2 substrate. Tendrils approximately the same diameter as those 

observed on bulk Pd samples are observed. Pits of similar diameter are also observed.  

(D) shows an area of the palladium film where the helium plasma has eroded through the 

palladium film to the substrate with very thin tendrils of Pd stretching across. 
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Figure 7. SEM micrograph of palladium surface (30 nm thin film deposited on SiO2) after 

exposure to helium plasma at elevated temperature. Figure 5A–D are different resolutions 

of the same location showing growth no tendril growth, but a significant amount of voids. 

These voids are of a diameter greater than the pits observed in the bulk and 300 nm film 

samples. Large wrinkles appear evident in the film. It appears as though formation and 

growth of bubbles within the 30 nm thick film rupture the film without being able to build 

upon each other and grow nanostructures. 

3.3. Catalysis with Nanostructured Palladium 

It has been suggested that the increased surface area of nanostructured palladium could provide 

greatly enhanced catalytic activity. To investigate this hypothesis, a comparison was made between 

identical plates, one not nanostructured and the other nanostructured under identical conditions to the 

plate described above. This comparison of catalytic properties was carried out using a reduction 

reaction, which modified cyclohexene into cyclohexane through the syn addition of two hydrogens 

using the palladium pieces as the catalysts for the reaction [14]: 

C6H10 + H2 → C6H12 

The catalytic properties of each of the palladium samples, both smooth and nanostructured, were 

compared to the industrial palladium catalytic standard of palladium absorbed onto a carbon surface [15]. 

This standard is widely accepted as the best way to increase surface area for catalytic reactivity. 

Alkenes are reduced to alkanes through a multi-body process, where the palladium or other catalyst 

acts as an activation site for the reaction. Following the Horiuti-Polanyi mechanism [14], hydrogen 

first dissociatively chemisorbs to the bonding site on the palladium surface, but only if the hydrogen 

molecule has its axis parallel to the surface of the palladium crystal [16]. For this reason, hydrogen is 
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often found in excess in these reactions. Cyclohexene, present in the reaction in liquid form, 

dissociatively bonds to the surface of the palladium in much the same way as the hydrogen molecule, 

where the pi bond in the double bond between the carbons is broken. The carbons then bond to the 

palladium surface. The dissociated hydrogen atoms then bond to the free sites on the carbon atoms 

currently bonded to the palladium surface and the molecule leaves the palladium surface as an alkane 

since alkanes are not strongly adsorbed on the surface. For a single reaction on a simple palladium 

surface, this leads to a significant reduction in the activation energy, making the reaction feasible  

for scale-up. 

All reactions were carried out with the primary reactant, cyclohexene, in liquid phase. A block 

diagram of the experimental setup can be seen in Figure 8. The reaction vessel was a 500 mL,  

three-neck round bottom flask connected to a vacuum line on one neck, a gas bubbler on the second 

neck, and stoppered on the third neck. Prior to closing off the flask, the catalytic samples were 

weighed and added, along with a magnetic stir rod. The reaction chamber was then sealed. The 

chamber was then purged with argon and evacuated three separate times to ensure atmospheric purity. 

150 mL of cyclohexene was added through the stopper using a syringe. A second syringe connected to 

a hydrogen line was then inserted into the cyclohexene liquid in order to bubble into the flask an 

excess of hydrogen gas, as noted by the bubbler. Before hydrogen was added, a control sample was 

taken. Samples were then taken using a microsyringe at 30 min intervals for 180 min, while the 

hydrogen was bubbled through the reactants and the stir rod agitated the reactants. This was done to 

test the reaction rate for each of the catalyst types. All samples taken were 100 µL in volume and were 

added to NMR sample tubes along with 600 µL of deuterated chloroform (CDCl3), which were mixed  

through inversion. 

 

Figure 8. A block diagram of the palladium-catalyzed hydrogenation reaction vessel, 

including the hydrogen gas inlet, the vacuum cylinder outlet, the magnetic stirrer, and the 

gas bubbler used to qualitatively determine the flow rate of the hydrogen through the  

reactant volume. 
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The catalytic capability of the different palladium types was measured by determining the ratios of 

the areas under the typical cyclohexene peaks to the typical cyclohexane peaks seen in Nuclear 

magnetic resonance (NMR)  spectra. A Varian Unity Inova NMR spectroscopy machine [17,18] was 

used to make the measurements, and each scan used a spectral frequency of 399.74 MHz, with 1 

transient at an acquisition time of 4.096 seconds. The scans were performed using one-dimensional 

proton NMR at a 45 degree pulse width. Ratios were taken between areas under the 1.4 ppm 

cyclohexane peak and the mean of the areas under the 1.2 ppm, 1.7 ppm, and 2.0 ppm cyclohexene 

peaks, normalized to the deuterated chloroform standard. Figure 9 shows the results of the catalytic 

conversion over time for the different catalyst types, indicating that the fuzzed sample is greatly 

improved in conversion over the non-fuzzed sample. 

 

Figure 9. A plot of the yield measured as the ratio of the concentration of the cylcohexane 

to cyclohexene. This ratio is based on the ratios of areas under the curve of the 

cyclohexane 1.4 ppm peak and the mean of the intensities of the three cyclohexene peaks 

seen at 1.2 ppm, 1.7 ppm, and 2.0 ppm in the NMR scans, which are characteristic for the 

respective compounds and are normalized to the deuterated chloroform standard. These 

ratios were also taken as a function of time to, not only observe the effectiveness of each 

catalyst type, but also how the kinetics of the reaction compare with each catalyst type. 

4. Discussion and Conclusions 

A variety of palladium samples were exposed to a flux of 40 eV helium ions at temperatures 

between 0.3 and 0.5 Tm. Samples of bulk palladium (i.e., wire and plate) showed evidence of bubbles 

of approximate diameter 100 nm and tendrils of approximate diameter 350 nm. The nanostructuring 

growth mechanism appears to be similar to that of tungsten, with an active temperature range similar to 

that of tungsten after normalization to the melting point. However, the diameter of the bubbles is much 

larger than that of those observed in tungsten. Previous studies of exposure of different metals to 

energetic helium fluxes at elevated temperatures have suggested that the nanostructuring process is 

heavily dependent on crystal structure [8]. Body centered cubic (bcc) crystals, such as tungsten, 

molybdenum, and tantalum, show very similar nanostructures in both size and morphology. Palladium 
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is a face centered cubic (fcc) material, and therefore, will nanostructure differently than the bcc 

tungsten. However, since the ratio of tendril diameter to pit diameter as well as the ratio of inter-tendril 

separation to pit diameter is the same for both tungsten and palladium, it is highly probable that the 

mechanism for the formation of the nanostructures is the same. The difference in bubble size then is 

the biggest driver in the difference in observed morphology. 

Nanostructuring the palladium plate resulted in a large increase in catalytic activity beyond that of 

the non-nanostructured sample. It should, however, be noted that the reference Pd/C catalyst 

outperformed both of the fuzzed and non-fuzzed samples due to the very large surface area provided 

by the activated carbon. Mechanical removal of these nanostructures from the surface of the palladium 

to produce a finely nanostructured powder catalyst may increase the catalytic activity beyond that of 

the standard. Alternatively, nanostructuring of other geometries with a helium plasma may offer 

advantages in systems where filtration of powder catalysts would be impractical and conventional 

methods of surface roughening, such as sand blasting, would be too violent on fragile catalyst 

geometries. Nanostructuring by helium plasma could also be performed atop a sand blasted layer to 

further increase the surface area. 
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