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SiOx Deposition on Polypropylene-Coated Paper
With a Dielectric Barrier Discharge

at Atmospheric Pressure
Na Li, Yui Lun Wu, Jungmi Hong, Ivan A. Shchelkanov, and David N. Ruzic, Member, IEEE

Abstract— Deposition of transparent oxide films at atmosphere
pressure onto polymeric substrates at room temperature is a
technique gaining rapid acceptance. These films can be used for
numerous applications such as antiscratch and water permeation
barrier coatings. In this paper, a ∼1.4-µm SiOx layer has
been deposited on polypropylene-coated paper at atmosphere
pressure with a filamentary dielectric barrier discharge (DBD).
The DBD linear discharge was driven by a 30-kHz power supply.
Scanning electron microscope, X-ray photoelectron spectroscopy,
and attenuated total reflection-Fourier transform infrared spec-
troscopy were used to characterize the deposited film. The
deposited thin film decreased water permeation through the
paper by ∼15%.

Index Terms— Atmospheric pressure plasma deposition,
dielectric barrier discharge (DBD), polypropylene (PP),
SiOx film.

I. INTRODUCTION

POLYMERS have been widely used in industry for its
flexibility, printability, and recyclability [1]. However,

some properties of polymers such as poor gas barrier and
antiscratching performances may limit their applications. As a
result, SiOx films deposited on polymer substrates are
drawing extensive attention, because they can act as
transparent and microwaveable gas/moisture barrier layers and
scratch-resistant coatings [2]–[4].

The polymeric substrate cannot withstand high
temperature, hence requires the SiOx film to be deposited at
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relatively low temperatures. Plasma-enhanced chemical vapor
deposition is a promising method [1], [5]–[7] because of
the high deposition rate and the low substrate temperature
during the process. However, these processes are generally
carried out in low-pressure systems, which require bulky
and expensive equipment to sustain the vacuum. This can
dramatically increase the cost of final product even though
there are no technical limitations for the method to be used
in industry. The recent advance in atmospheric pressure
plasma deposition technology [8], [9], especially utilizing
dielectric barrier discharge (DBD) [10]–[14], unlocked a new
way for the SiOx coating. Different discharge regimes of
DBD including Townsend discharge [10], [11], filamentary
discharge [12], and glow discharge [13], [14] were used to
deposit SiOx films onto polymer substrates. It is undeniable
that both the Townsend and the glow discharge modes
(103−104 W/m2) cannot deposit as much power density into
the plasma as the filamentary mode (>105 W/m2). Besides,
they are very sensitive to small changes in the operating
conditions and easy to transfer toward the filamentary
discharge [15]. Hence, filamentary DBD was adopted in
this paper.

Many research groups reported successful experimental
results for deposition of SiOx at atmospheric pressure on
10–100-µm thick and polymeric foils [2], [16]–[19]. The
deposition rates and film properties are greatly affected by
the substrate temperature [11] and the processing parameters
such as the scanning speed of the torch, the distance from
the torch to the substrate [4], the type of precursors [18],
and the flow rates of the precursor [12]. Nevertheless,
SiOx deposited on polyethylene terephthalate, polyethylene-2,
6-napthalate, and polycarbonate are more intensely investi-
gated in the literature, and polypropylene (PP) seems to be
more problematic than polyesters as base material [6], [7].
The challenges of deposition technique on PP not only lie in
the low temperature resistance but also in the relatively high
thermal expansion coefficient of PP substrate which can cause
cracks on the SiOx coatings [4] if the process temperature is
too high.

In this paper, we intended to deposit a crack-less
SiOx film on a thin PP layer (∼1.6 µm) covered on
∼70-µm-thick paper using filamentary DBD at atmospheric
pressure and room temperature. The transition voltage between
crack-less and cracked film was reported. The current–
voltage characteristic has been monitored during the deposition
process to confirm the discharge regime. After deposition,
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Fig. 1. Parallel-plate type DBD setup schematic. The high-voltage electrode was supported by structural framing at a fixed height, and the ground electrode
was put on the worktable which moved with a speed of 1 mm/s during the process.

the film surface and cross section were observed using scan-
ning electron microscope (SEM) to get the surface morphology
and the deposition thickness. It showed that a SiOx film
without cracks was obtained. Furthermore, the chemical com-
position and the bonds of the deposition film were measured by
X-ray photoelectron spectroscopy (XPS) and Fourier transform
infrared spectroscopy (FTIR).

II. EXPERIMENTAL SETUP

The parallel-plate type DBD plasma source is schematically
presented in Fig. 1. The discharge electrodes were both made
of aluminum. The top electrode was an inverted U-shape
high-voltage electrode, designed to also supply processing
gas into the 2-mm discharge gap. It was covered with
a 2-mm-thick dielectric barrier made of alumina silicate,
and was connected to a power supply capable of providing
ac power signals with frequencies from 25 to 35 kHz and
voltages from 5 to 15 kV. We took the same DBD power
supply used in [20] and adapted it to this new geometry. The
bottom electrode was grounded and covered with a 5-mm-thick
glass disk as dielectric barrier. The electrode configuration
provided an approximate discharge area of 140 mm × 35 mm.
The ground electrode was attached to a one-axis motor-driven
worktable to process large samples. The worktable could move
up to 250 mm with a maximum speed of 15 mm/s. The
whole system was operated at atmospheric pressure. Neither
the ground electrode nor the high-voltage electrode had any
additional cooling.

The SiOx film was deposited on a paper sheet
which was precovered with a ∼1.6-µm PP layer. The
140 mm × 80 mm paper was attached to the glass disk using
Kapton tape at the center region of the ground electrode.
Hexamethyldisiloxane (HMDSO) was used as the precursor
during the deposition process. HMDSO is a common monomer
in the deposition of SiOx [2], and the process of HMDSO
decomposition was well-described elsewhere [21], [22].
A venturi pump was used to turn the liquid HMDSO into
vapor, and a needle valve was used to control the flow rate
of HMDSO. The He/air/HMDSO gas mixture was provided
to the discharge area through the four gas ports on the
high-voltage electrode. Helium was supplied to obtain stable
discharge, and compressed air was utilized to get more
inorganic characteristics on the SiOx film by promoting carbon
oxidation of HMDSO [23].

Fig. 2. Voltage–current curve for the deposition process. It indicated
a classical filamentary DBD.

Thin SiOx films were deposited on the PP-coated paper
in the 30 kHz discharge in two phases. During the
first phase—pretreatment phase, pure helium (10 L/min)
plasma was run for 10 min to improve adhesion. During the
second phase—deposition phase, 1 L/min of compressed air
and 0.045 mL/min of HMDSO were added to the helium
discharge for 20 min. To compensate for the inevitable
inhomogeneous characteristics of filamentary discharge, the
worktable was moving back and forth with a speed of 1 mm/s
during the whole process. The SiOx film could be got within
the length of high-voltage electrode and the scanning distance
of ground electrode. It was expected that the size of the plasma
source could be scaled up for larger substrates in industry.
In addition, the experiments were repeated for many times to
make sure that the deposition results were not occasional but
reproducible.

III. RESULTS AND DISCUSSION

A. Dielectric Barrier Discharge Regime

During the deposition process, the voltage–current discharge
characteristics were measured with high-voltage probe
(Tektronix P6015A 1000X) and Pearson current monitor
(Model 110), and stored on oscilloscope for postprocessing.
In the experiments, 7 kV was a common applied voltage,
and the voltage–current curve was shown in Fig. 2. A large
number of short-lived microdischarges were observed on the
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Fig. 3. SEM images of SiOx layer on PP-coated paper. (a) Surface
before deposition—typical PP morphology. (b) Surface after deposition—
microparticles on SiOx film. (c) Cross section before deposition—a
∼1.6-µm-thick PP layer on the paper. (d) Cross section after
deposition—a ∼1.4-µm-thick SiOx layer on the PP layer.

current curve per half-cycle of the applied voltage, which
indicated a classic filamentary DBD. It has already been
proved that continuous and uniform films can be formed by
atmospheric pressure filamentary plasma [12], [24]. In this
paper, the localized thickness uniformity of the SiOx film
could be observed using SEM.

B. Surface and Cross-Sectional Morphologies

The SiOx coating thickness on polymer was generally
obtained indirectly by means of stylus profiler or ellipsometry
measurement of film deposited on silicon wafer [4], [11], [22].
However, the absolute film thickness on polymers cannot be
obtained in this way due to its softness. In this paper, the
measurement was performed by SEM (Hitachi S4700 SEM),
through observing the cross section of the PP-covered paper
substrate. Since the deposited film could be easily damaged
by mechanical cutting, the paper was thus dipped first into
liquid nitrogen to harden it so that it could be cleaved off to
make a clean cross section. SEM pictures were shown in Fig. 3
with surface and cross-sectional images of the substrate before
and after deposition when the applied voltage was 7 kV.
Before each measurement, the substrate was bended into
a 5-mm-radius curve to test the crack resistance.

From Fig. 3(a) and (c), the ∼1.6-µm-thick PP layer on
the paper could be seen before the deposition process started.
In contrast, in Fig. 3(b) and (d), the ∼1.4-µm-thick SiOx layer
could be seen above the PP layer after deposition. From this,
the deposition rate was calculated to be (70 ± 7) nm/min and
(0.8 ± 0.08) mm3/min. Moreover, as shown in Fig. 3(b), there
were no cracks after bending but microparticles formed on
the surface. The microparticles were believed to be mainly
related to the organic composition such as methyl groups in the
SiOx film. This could be confirmed by the XPS and
FTIR results. The particles might also be caused by the

Fig. 4. SEM images of SiOx layer on PP-coated paper. (a) Applied voltage
was 7 kV. (b) Applied voltage was 8 kV.

nonhomogeneous of the filamentary discharge [25]. Also, there
was another possibility that samples were affected by dust and
humidity, since the experiments were not conducted in a clean
room and the compressed air was directly from the university
airline without any desiccation.

In addition, an experiment with applied voltage at 8 kV was
carried out. As shown in Fig. 4, compared with the crack-less
surface at 7 kV in Fig. 4(a), there were obvious cracks at
8 kV in Fig. 4(b). This should be mainly due to the large
difference of the thermal expansion coefficients between the
SiOx film and the PP layer. When the voltage was higher, the
processing temperature was higher. After the processing, when
the substrate temperature returned back to room temperature,
cracks appeared when 8 kV was used. Therefore, 7 kV was
used most as the applied voltage in this study.

C. Chemical Composition

XPS (Kratos Axis XPS) result in Fig. 5(a) showed the
elements on the substrate surfaces before and after deposition,
and the energy resolution of XPS measurement was selected to
be 0.5 eV/step to distinguish closely spaced peaks. The major
component of the original surface was carbon (∼80%), and
there was no silicon peaks. In contrast, after deposition,
silicon (∼36%), oxygen (∼45%), and carbon (∼18%) peaks
were observed. It was noticed that there was still ∼18% carbon
on the deposited film, which was impossible to be caused
only by the surrounding dust and contamination. This meant
at least one part of the carbon came from the methyl groups
of HMDSO, and the SiOx film contained a small amount of
organic composition.

More specifically, narrow scans of the Si 2p, O 1s, and
C 1s were analyzed. The peak shifting was calibrated by
C 1s peak at 285.0 eV. As shown in Fig. 5(b), the Si 2p
signal could be deconvoluted into two peaks, which were
centered at 104 eV (∼54%) and 103.2 eV (∼46%). By
comparing these individual peaks energies with the National
Institute of Standards and Technology XPS database, these
two peaks corresponded to the SiO2 bonding [26] and
the SiO1.91 bonding [27], respectively. The O 1s peak at
533.1 eV in Fig. 5(c) could be ascribed to O–H bonds
(H2O, Si–O–H) [28]. As for the C 1s narrow scan in Fig. 5(d),
there was a small peak at the binding energy of 288.1 eV
corresponding to the –C = O/O–C–O bond [29]. All of these
assignments would be further supported by the FTIR analysis
discussed later.
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Fig. 5. XPS data. (a) Comparison of the chemical compositions between surfaces before and after deposition. (b) Narrow scan of Si 2p on the
SiOx deposition film. (c) Narrow scan of O 1s on the SiOx deposition film. (d) Narrow scan of C 1s on the SiOx deposition film.

The XPS result indicated that the methyl groups of HMDSO
did not dissociate completely here. It has already been demon-
strated that the increase of O2/HMDSO concentration would
lead to the reduction of organic groups in the films depo-
sition process [6], [30]–[32], which could be tried in our
future work.

D. Surface Chemical Bonding

To confirm the chemical bonds on the SiOx film, the film
was observed by FTIR (Thermo Nicolet Nexus 670) equipped
with the ATR accessory (Nicolet smart multibounce HATR).
The spectrum was obtained from an average scan of 100 scans
in the range of 700–4000 cm−1 at a resolution of 4 cm−1.
There were no peaks beyond 1500 cm−1, so only the spectrum
in the range of 700–1500 cm−1 was shown in Fig. 6.

The most intensive peaks at ∼790 cm−1 [33] and
980–1070 cm−1 [18] could be assigned to Si–O–Si bending
mode vibration. The peak in the region of 900–960 cm−1 was
associated to Si-OH stretching [18]. And the Si–CH3 peaks at
840 cm−1 and 1280–1260 cm−1 [corresponding to Si–(CH3)n

groups with n = 1, 2, 3] [16] were clearly observed in the
spectrum, which indicated the organic composition in the
SiOx film.

Fig. 6. FTIR data. The Si–O–Si and Si–(CH3)n bands existed on the
SiOx film.

E. Water Permeation Test

A homemade test device was developed to test the water
permeation property of the crack-less SiOx film, as presented
in Fig. 7. The procedure can be described as follows. Water
was poured into the Teflon holder into its small cylindrical
tank. The holder was covered by the paper substrate, and
then a plastic cover with a round hole was used to clamp the
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Fig. 7. Homemade water permeation test device schematic. The test setups
were placed into a vacuum desiccator with Drierite as desiccant so that the
water loss could be considered as the water permeation amount.

Fig. 8. Water permeation test result. The weights of the setups were weighed
once a day, and the accumulated weight losses were recorded.

paper to the Teflon holder. The Teflon–paper–cover joints were
sealed with sealing compound to prevent the water evaporating
through the sides. The test setups were placed into a vacuum
desiccator with Drierite as desiccant. To accelerate the water
evaporation speed, the vacuum desiccator was put into an oven
and the temperature was kept at 55 °C. The humidity in the
vacuum desiccator was controlled between 15% and 18%.

Three samples before and three after deposition were used
to measure water permeation over time. These Teflon holder
assemblies were weighed once per day, and the mass loss
during the first nine days are presented Fig. 8. The result
showed that water permeation of paper with the deposited film
was (14.9 ± 1.1)% less than that before deposition. Although
the resistance to water vapor improved a little bit, this was
an unexpected low value for such a thick SiOx coating on
the substrate. The main problem was the water vapor pressure
inside the test device pushed the substrate during the test. Since
the edges were sealed tightly, the substrates could not stretch
freely. Many small cracks were observed on the film after the
water permeation test. It was assumed that the water resistance
could be enhanced much more than 15% without the cracks.
Applications which do not constrain the overall expansion of
the material, such as wrapping a product, could see larger
benefits.

IV. CONCLUSION

In this paper, we have presented a method for
crack-less SiOx film deposition on PP-coated paper substrate.
Filamentary DBD at atmospheric pressure was used to get

low substrate temperatures, preventing degradation of the thin
layer of PP. The SEM result showed that the film was locally
uniform without cracks and with microparticles on surface.
The film composition was confirmed by both XPS and FTIR.
It was SiOx with a small amount of organic composition
caused by the methyl groups of HMDSO. Water permeation
rate through substrate with the ∼1.4-µm SiOx film decreased
by ∼15%.
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