Seebeck Apparatus

June 26, 2013

Exposure to very large heat fluxes as well as large radiation loads inducing strong wear threatens to limit the lifetime of solid plasma facing component materials in fusion energy devices. Liquid metal devices, however, do not suffer the same ill effects. Liquid lithium, in particular, has shown promise as a potential candidate for a plasma facing component material. Several methods exist to introduce lithium into fusion devices, however, one of the most unique methods of doing so is the Liquid-Metal Infused Trenches concept of CPMI. LiMIT relies on thermoelectric magnetohydrodynamics (TEMHD) to propel a liquid metal down a series of trenches. TEMHD flow is based on the interaction of a thermoelectric current with a magnetic field.

The source of the thermoelectric current in the LiMIT device arises from the junction between the flowing liquid metal and the trench wall material. A thermal gradient across this interface gives rise to the thermoelectric current. An analogy may be constructed by considering the interface to be composed of two junctions, the top portion of the trench would constitute the hot junction of a thermocouple, while the bottom portion of the trench would constitute the cold junction. Since the interfacial voltage between the two materials is a function of temperature, the temperature difference gives rise to a voltage difference, which drives a current.

The magnitude of the current driven is proportional to the relative thermopower, or the difference in Seebeck coefficient, between the two materials. To generate data on the Seebeck coefficient of a wide variety of materials, an apparatus was constructed at CPMI. Shown in the photo above, measurement of the Seebeck coefficient of many fusion relevant materials is possible. A library of Seebeck coefficients is being compiled, and measurements are ongoing.

(Updated 2013)

Posdoctoral Position Announcement for CPMI at the University of Illinois at Urbana-Champaign

June 20, 2013

The Center for Plasma Material interactions (CPMI) at the University of Illinois at Urbana Champaign is looking to fill in a position at the post-doctoral research associate level, who will work on research areas relevant to plasma material interactions for several applications. The Center for Plasma-Material Interactions currently has 12 graduate students, and over 20 undergraduate researchers. The primary emphasis is experimental and computational study of plasma relating to the manufacturing of semiconductor devices (plasma-based lithography, plasma etching, PVD sputtering, PECVD thin-films) and the edge-region of future fusion energy devices (lithium walls, lithium technology, edge localized modes, mixed material sputtering at elevated temperature). In addition, CPMI is also a part of the “NSF I/UCRC center for Lasers and Plasmas for Advanced Manufacturing” and has many new opportunities for research projects, particularly in the field of atmospheric pressure plasmas. This particular position will work both in semiconductor materials and in fusion engineering. CPMI currently has a total of 13 major experimental systems and is expected to grow as we take on new projects. The hired post-doc is expected to closely work with Prof. David Ruzic in managing research activities in the lab and conduct experiments while assisting students with research.

Primary responsibilities include, but are not limited to:
– Work with Prof. David Ruzic in managing research activities
– Advice and assist students with research
– Conduct original research on CPMI projects
– Work with industrial research partners and collaborations on projects
– Identify and grow new research directions
– Monitor proposal solicitations and write grant proposals
– Meeting deadlines, milestones and write reports for funding agencies
– Report results in peer-reviewed publications and conferences

The postdoctoral researcher’s development at CPMI will also be enhanced through a program of structured mentoring activities. The goal of this program is to provide the skills, knowledge and experience to prepare the successful candidate to excel in his/her career path. To accomplish this goal, the mentoring plan includes career planning assistance, and opportunities to learn a number of career skills such as writing grant proposals, teaching students, writing articles for publication and communication skills.
The successful candidate for this position is expected to have earned a Ph.D. in plasma engineering, nuclear engineering, electrical engineering, mechanical engineering, material science, physics, or a related area before the date of joining. Research experiences in any or all of the following fields are a plus:

– Fusion-Energy-Related Experiments
– Plasma Surface Modification
– Plasma Diagnostics (QCM, ESA, OES, Laser based diagnostics)
– Plasma Modeling
– Plasma Processing Applications
– Plasma Synthesis of Materials
– Material Characterization Tools (SEM, TEM, AFM, Profilometer, Ellipsometer, XPS, AES, TOFSIMS etc.)
– Atmospheric Pressure Plasmas

The post-doctoral research associate will have an opportunity to be involved in all of the above areas and will help grow the group within these and related areas. To apply for this position please send cover letter, CV/resume, and contact information for 3 references to Andrew Groll (

Salary: $46,000 (or competitive and commensurate with experience)
Start date: September 2013
Expected duration of the position: 1-2 years

Contact information for this position: Prof. David Ruzic, or Andrew Groll,

A downloadable copy is located below:


Summer Fun and Education at CPMI!

June 20, 2013

Every year, students from various high schools and middle schools come to visit the University of Illinois. Many of these students participate the World Wide Youth in Science and Engineering (WYSE) camps offered by the Engineering College. During WYSE, students explore multiple different engineering fields for tours of the facilities, demos, and experiments. When students visit the Nuclear engineering department, CPMI presents the fundamentals of plasma physics by displaying various vacuum chambers, crushing cans, and launching copper rings using its newly created coil gun.

Updated Alumni List!

June 20, 2013

The quite important alumni list has been updated including all Master’s and Ph.D. students as well as their respective theses. Take a look. Contact information coming soon!

Congratulations to Dr. John Sporre!

June 5, 2013

On Tuesday June 4, 2013, John Sporre held his final doctoral defense. His presentation on the “Diagnosis of the flux emanating from the intermediate focus of an extreme ultraviolet light lithography source” earned him the completion of his PhD. Congratulations to Dr. John Sporre!

Welcome to TUFCON

May 23, 2013
Helicon Plasma Generation

Helicon Plasma Generation


Under the leadership of Peter Fiflis, CPMI has begun research looking into the effect of radiation on tungsten material. The TUngsten Fuzz by heliCON (TUFCON) project is currently exploring tungsten surface fuzz formation in hopes of understanding and minimizing its presence for application as a potential divertor material in fusion devices. Current published works suggest that fuzz formation occurs at He energies of less than 150 eV which is the sputtering threshold of W. CPMI intends implement new methods in exploring this phenomenon.

Congratulations to Zihao Ouyang, Liang Meng and John Sporre!

May 23, 2013

Every generation wishes to see the young and developing succeed. As CPMI is a closely knit family, we are proud to announce that, through hard work and dedication, a few of our PhD candidates (soon to be PhD graduates) are heading toward a bright future. Zihao Ouyang, and Liang Meng have acquired positions with Lam Research and John Sporre will be working with IBM. We wish them good luck.

CPMI gains affiliate faculty member.

February 22, 2013

CPMI is pleased to welcome Dr. Logan Liu from the Electrical Engineering department. Dr. Ruzic, CPMI’s Director, and Dr. Liu will be submitting a joint SRI proposal.

26th Annual Ruzic Chili Cookoff

February 17, 2013

On February 16th, CPMI Director Dr. David Ruzic held his 26th annual Chili Cookoff. Over 95 people were in attendance and over 33 different chilis were served.  A good time was had by all.

Princeton Plasma Physics Lab comes to Champaign.

February 16, 2013

Daniel Andruczyk, one of CPMI’s Research Engineers employed at Princeton’s Plasma Physics Lab returned to Champaign this week. He brought along a fast framing camera, which was extremely useful in additional experiments. We look forward to future visits from Dan.