Molecular Dynamics Modeling of Deuterium in Liquid Lithium Surfaces

March 1, 2005

J. Nucl. Mater., 337-339, 1029-1032 (2005).

Qiu, Hua-Tan, Ruzic, D. N.

Sputtering yields and reflection coefficients from liquid lithium surfaces under low-energy, light-particle bombardment have been modeled for this work. An extended molecular dynamics (MD) simulation has been developed using an improved singlet ab initio Li–D potential splined with the universal potential at small distance for higher energy interactions. The results show a temperature effect. For example, 100-eV deuterium incident at 45° on liquid Li surfaces at 473 K and 653 K give sputtering yields of 0.196 ± 0.040 and 0.315 ± 0.060 respectively, and reflection coefficients of 0.165 ± 0.040 and 0.234 ± 0.060. The effects of surface temperature, incident energy and incident angle on sputtering yields and reflection coefficients, together with the pertinent energies of the sputtered and reflected atoms, are shown and compared with the results of the standard binary collision code, TRIM.SP.